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Abstract 

Some modifications are introduced into the extinction 
correction formulae based on the RED (random elas- 
tic deformation) model developed earlier by the 
author [Kulda (1987). Acta Cryst. A43, 167-173]. The 
scattering cross section, which includes a correction 
for primary extinction, has been extended to allow 
for a more general angular variation of the effective 
deformation gradient. The originally proposed cos 0 
dependence is included as one of the limiting cases 
corresponding to a pure lattice-plane misorientation. 
A modified expression has been derived for the 
angular reflection curve profile which describes 
properly the broadening due to the finite dimensions 
of the diffracting region. This version of the RED 
model containing three free parameters has been 
employed in experimental tests reported in paper II 
[Kulda (1988). Acta Cryst. A44, 286-290]. 

I. Introduction 

In a recent paper (Kulda, 1987), hereafter referred 
to as paper A, we have proposed the random elastic 
deformation (RED) model for extinction treatment 
in real crystals. Unlike the traditional approaches, 
reviewed, for example, by Becker (1977), which use 
the concept of mosaic structure, RED is based on a 
stochastic sequence of elastically deformed domains. 
It is just this feature which in the end makes it possible 
to cover primary extinction effects more adequately 
by a direct use of the dynamical diffraction theory 
(Kulda, 1984). Secondary extinction is treated in 
a conventional way by solving the Hamilton- 
Zachariasen intensity coupling equations. 

Paper A was confined to development of the RED 
concept and to comparison of its basic characteristics 
with other existing extinction models. The aim of the 
present paper is to provide working formulae that 
could be built into a least-squares refinement program 
and used in practical performance tests of the RED 
model (Kulda, 1988). As the most important step in 
this direction we shall derive a modified expression 
for the angular distribution function WRED(e), taking 
into account broadening caused by finite dimensions 
of the reflecting regions and allowing for a more 
general deformation type. 
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2. Generalized deformation gradient 

In paper A, for the sake of simplicity, we set 
[OAO/Oso[ = cos O/R, thus considering the component 
of elastic bending that brings about pure lattice-plane 
misorientation as the only source of deformation. In 
the course of practical tests this assumption - though 
realistic for a particular crystal - proved too limiting 
for general use. As pointed out already in the dis- 
cussion of paper A any real deformation consists of 
both misorientation components and components 
exhibiting changes of the lattice parameter. In the 
latter case with the diffraction vector parallel to the 
atomic displacement U we would have ]OAO/Oso] = 
sin 0/R. Therefore it appears reasonable to introduce 
a more flexible model [OAO/Oso[ = C(c, O)/R, which 
could with the help of a free parameter c allow for 
both situations. Furthermore, the mosaic width 
parameter a [cf equations (13) and (14) of paper A, 
here referred to as (A13) and (A14)] is angle indepen- 
dent within the Becker & Coppens (1974, 1975) treat- 
ment which is known to be exact in the limit of pure 
secondary extinction (Kato, 1976). Thus also the 
possibility C(c, 0)=  constant should be covered by 
our improved formula. The simplest choice satisfying 
all three requirements is 

C(c, 0)=[c+(1-2c)cos  2 8] '/2 (1) 

where c e (0, 1) is an additional free parameter of the 
RED model. 

The generalized angular distribution function w(e) 
is now written in analogy with ( A l l )  as 

WRED(e) = {R/[fC(c, 8)]} 

xexp(-zr{Re/[TC(c, 8)]}2). (2) 

This expression, with C(c, O) given by (1), can be 
interpreted as a joint distribution function of two 
superimposed random walk sequences of the same 
type (AT) differing just in the deformation gradients 
[aAO/aso[1 = cos O/R and laAO/aso[2 = sin O/R and in 
the numbers of permitted states N~, N2. Putting c-- 
N2/(N1 + N2) we see that (2) is just a convolution of 
the distribution functions 

= (  ,laAol 0 s o l , ) - '  

x exp[ -  zre2/(~IOA0/0sol,)2]. 
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Following this line we would, however, have to 
average in the next step the exponential terms of the 
reflection probability (A5) which would lead to a 
rather complex expression. Therefore we prefer to 
treat C(c, O)/R as an effective deformation gradient 
and substitute it for la,a0/0sol directly into OrRE D. 

3. Broadening of the reflection curve 

Until now the angular profile of any reflection was 
determined solely by the properties of the stochastic 
sequence of the deformed domains. It is clear that 
with increasing deformation, as the conditions for 
diffraction on individual domains approach the kine- 
matical case, an additional broadening of the angular 
profile has to be expected, which requires further 
generalization of (2). Within the mosaic model an 
analogous step, allowing for type II extinction, is 
performed by convoluting the mosaic distribution 
function with the kinematic rocking curve rk(e). For 
symmetrical diffraction geometry on a plane-parallel 
crystal plate we may write 

rk ( e ) = a k ( s i n  "trak e / "lrotk e ) 2, (3) 

w h e r e  a k = I sin 20/A and l represents the averaged 
reflected beam path. 

Let us for a while rewrite (3) in terms of the dynami- 
cal diffraction theory (Sears, 1978) as 

r~,( Y)--sin E (AG Y) /rE (4) 

where Ao = IAFc/O and Y= errO sin 20/(F~A 2) 
represent the reduced beam path and angular devi- 
ation, respectively. Equation (4) can easily be related 
to the expression for the dynamical rocking curve for 
the symmetrical transmission geometry, 

r ' a ( Y ) = s i n 2 [ A G ( y 2 + l ) l / 2 ] / ( y 2 + l ) .  (5 )  

We see that only for sufficiently small AG (say 
AG < 1) may unity be neglected in comparison with 
y2 over a major part of the rocking curve and (5) 
may be replaced by (4), where the structure factor 
Fa cancels out. In practice FG often varies by orders 
of magnitude within a single data set so that it may 
not be safe to assume that for all reflections the 
kinematical expression (4) is valid. Instead, the value 
of AG should be checked for each individual 
reflection. 

Unfortunately such simple but rigorous consider- 
ations based on the dynamical theory cannot be easily 
extended to the case of deformed crystals. The 
description starting from the Takagi-Taupin 
equations deals with two directions defined once and 
for all (those of the transmitted and reflected beams) 
and does not explicitly account for any broadening 
effects. In order to include them in our treatment we 
recall firstly the well established fact (e.g. Gronkowski 
& Malgrange, 1984) that the reflection takes place in 
that part of a deformed domain where the Bragg-angle 

deviation does not much exceed the dynamical rock- 
ing-curve width (Fig. 1). Later on we shall assume 
that the reflecting region is confined just to the range 
-1  -< Ay<_ + 1 (hatched area in Fig. 1). This assump- 
tion is supported by the independently derived 
equation (A4) which relates the probability of inter- 
branch transitions just to this range. For large defor- 
mations the thickness of such a layer becomes much 
smaller than the extinction distance and we shall 
assume that in this limit we may apply the kinematical 
formula (3) directly. The reflected beam path AsG is 
equal to the distance BC in Fig. 1, i.e. 

ASG = A Y ( d O / d  Y ) ( d s o / d O )  

=[FGA2/(~'~sin20)][R/C(c,O)]. (6) 

From this value we shall derive the angular width of 
the rocking curve (3) 

ak = A/(dSo sin 20) 

= [ zrf2/(FGA )]C(c, 0)1R 

= AoC(c, 0)/R, (7) 

where A G is the extinction length measured along the 
diffracted-beam direction. The use of the kinematical 
formula is justified whenever the thickness of the 
hatched region in Fig. 1 is appreciably less than the 
extinction distance or, in other words, whenever ak 
several times exceeds the width of the Darwin curve. 
This requirement does not mean any serious limita- 
tion for our purpose because the broadening term is 
important in O'RE D only when ak is comparable to the 
width of WRE D. 

Finally let us [in analogy to Becker & Coppens 
(1974, 1975)] approximate the expression (3) by a 
Gaussian r k ( e ) = a  k exp ( - - T r a ~ e  2) and write down 
the complete formula for WRED*r k" 

R 
WRED -- (~-2 .q._ A2)1/2C(c,  O) 

xexp f2+zl~ C(c,O)] J" (8) 

Equation (8) differs in an important way from 
analogous expressions of the Becker & Coppens and 
other traditional treatments: broadening of the reflec- 

-2  % / 

,k~\\\\\\\\\\\\\\\\\~~\\\\\\\\\) 
.1 
• 2 '  ' D ~ " " ~  

Fig. 1. Beam trajectories in a reflecting region of  a deformed 
domain:  AB incident, BC reflected and BD t ransmitted (via 
interbranch transition) beams. 
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tion curves depends not only on the Bragg angle and 
wavelength, but also on the structure-factor magni- 
tude. The reason for this is the definition of Asc in 
(6) based on the fact that the beam interacts only 
with a part of any individual domain. The final effect 
of this modification is similar to that called for when 
comparing the kinematical and dynamical rocking 
curves in the beginning of this section: broadening 
will appear starting from weak reflections, often 
characterized by high hkl and large 0. 

4. Summary and discussion 

The scattering cross section O'RE D with the 
modifications introduced in the preceding sections 
can be written in the form 

O'RED(e) = {1 -exp[-QR/C(c, 0)]}(? 2 + za2) -1/2 

I7" Re (9) 
x e x p {  72+A2[C(c, 0)]2}, 

with C(c, O) given by (1) and A~ = 7rOIFcA. In order 
to have a measure of primary extinction we may 
rearrange the right-hand side of (9) as YpQ~RED(e) 
with 

yp={1-exp[-QR/C(c, O)]}C(c, O)/(QR). (10) 

Here yp is the primary extinction factor, the magni- 
tude of which depends on the effective deformation 
gradient C(c, O)/R. For a given c and R the mutual 
proportion between primary and secondary extinc- 
tion is determined by the mean free path ? and its 
relation to the mean beam path T in the sample, as 
discussed in paper A (§ 4). 

The expression (9) for O'RED can be used within the 
energy transfer equations (ETE) whenever they are 
believed to be applicable. For some special crystal 
shapes, such as plane-parallel plates, where an ana- 
lytical solution of the ETE exists (e.g. Dietrich & 
Als-Nielsen, 1965), the new expression for the extinc- 
tion factor can be obtained if trRED given by (9) is 
substituted (with some care) for the kinematical cross 
section tr. For crystals of isotropic or slightly 
anisotropic shape the numerical solution of the ETE 
presented by Becker & Coppens (1974, 1975) may be 
used. In such a case the extinction factor is usually 
calculated with the help of the approximative 
expressions (A16); within RED the parameter x is 

given by 

XRED = 2{1 - e x p  [-QR/C(c, 0)]} T/(? 2 + ,~2)1/2. 

(11) 

Since we have introduced the quantity zac it is no 
longer possible to rearrange (11) in a form analogous 
to (A15) as the parameter A would depend on the 
structure factor Fc through A c. 

Irrespective of the particular way in which the ETE 
are solved, O'RE D contains up to three free parameters, 
?, R, c, to be adjusted by a least-squares fit to experi- 
mental data. This is one more than in the case of 
mosaic models (parameters g and r), which, however, 
possess an additional freedom in the choice of the 
functional form of w(e) not present in RED. To 
examine whether or not an additional degree of free- 
dom is justified within RED we may use significance 
tests on the agreement factors (Hamilton, 1965). They 
become particularly important in the case of R being 
sufficiently small for primary extinction to vanish 
(yp = 1), where (11) can be written as 

XRED=2[QR/C(c, O)][T/(?2+ A2)l/2]. (12) 

In such situations the angular dependence of the 
deformation gradient is often unimportant [ C(c, O) = 
constant, i.e. c=0 .5 ]  and the RED model yields 
results analogous to the Becker & Coppens mixed 
type except for the different description of the broad- 
ening effects. The transition to type I or type II is 
now a matter of the relation between the magnitudes 
of T and the largest Ac; in either of these limiting 
cases only a single free parameter, R~ ~ (type I) or R 
(type II), is required in (12). As soon as primary 
extinction begins to play a role, both ? and R become 
essential for usual data sets including weak and strong 
reflections simultaneously so that only the sig- 
nificance of the parameter c needs to be questioned. 
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Abstract 

The RED extinction model reported previously 
[Kulda (1987). Acta Cryst. A43, 167-173] was applied 
to several neutron diffraction data sets, some of them 
already used in the design of the Cooper & Rouse 
[Acta Cryst. (1971), A27, 622-628] empirical extinc- 
tion formula and in the tests of the Becker & Coppens 
[Acta Crysr (1974), A30, 129-147] formalism. The 
results of least-squares refinements fully confirm the 
expected gain in agreement due to an improved 
description of the coherent part of the wave interac- 
tion by the RED model, whose adequacy is further 
supported by the realistic values of the refined 
effective deformation gradient and mean free path 
between subsequent reflections. The RED-based har- 
monic thermal vibration parameters are systemati- 
cally somewhat larger than those obtained within the 
Becker & Coppens formalism and follow more closely 
the expected quasi-harmonic temperature depen- 
dence. Significant differences are also found between 
the two models in terms of the derived room- 
temperature Debye-Waller parameters. The RED 
values Bsr= 0.557 (10) x10 -2 and BF=0.830(10)X 
10 -2 nm 2 agree better with the results of shell model 
calculations based on experimental phonon disper- 
sion curves. 

1. Introduction 

In two recent articles (Kulda, 1987, 1988), hereafter 
papers A and B, respectively, we reported a new 
extin.ction formalism based on the RED (random 
elastic deformation) model of a real imperfect crystal. 
It was concluded that its main advantage should arise 
from direct application of the dynamical diliraction 
theory to the description of the coherent part of the 
wave interaction responsible for primary extinction 
and broadening of the reflection curve due to particle- 
size effects. Secondary extinction is treated by solving 
the energy transport equations for crystals of isotropic 
shape given by Becker & Coppens (1974a, 1975)- 
hereafter B&C. 

The present paper deals with a demonstration of 
the practical use of the RED formalism in the least- 
squares refinement of extinction and thermal vibra- 
tion parameters. For comparison of the performance 
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of several extinction models we chose the neutron 
diffraction data on SrF2 collected by Cooper & Rouse 
(1970, 1971). To these data the Cooper & Rouse 
(1970) extinction formula was tailored and, later on, 
they were employed by Becker & Coppens (1974b) 
and Cooper & Rouse (1976) for tests of the B&C 
formalism. For the following discussion of the 
influence of the extinction model on the refined ther- 
mal vibration parameter values we have added further 
data on SrF2 published by Mair, Barnea, Cooper & 
Rouse (1974) which include results of measurement 
at elevated temperatures. For all these data the tradi- 
tional mosaic models can be claimed to work satisfac- 
torily. Best agreement is usually attained within the 
B&C formalism which will therefore be used in what 
follows for comparison with RED. 

2. Method of data analysis 

The refinement on all of the data sets was performed 
with the help of a purpose-written computer code, 
THERM, based on a Levenberg-Marquardt-type 
nonlinear least-squares algorithm [e.g. procedure 
CURFIT in the book by Bevington (1976)] using 
numerical calculation of derivatives. The quantity 
minimized was Y. wi( F2oi 2 2 --Fc~) , Fo and Fc represent- 
ing the observed and calculated structure factors, 
respectively. Individual data points were weighted by 
squared reciprocals of the estimated standard devi- 
ations published together with the data. Values of the 
thermal diffuse scattering correction were taken from 
the same source. The effects of thermal motion on 
the structure factors were represented by the Willis 
(1969) formalism employed in the paper of Mair et 
al. (1974) and both harmonic vibration parameters 
asr, aF and the anharmonic parameter /3F were 
refined. For evaluation of the extinction correction 
y = Ys(XRED) within the RED approach we employed 
the analytical approximation (A16) [equation (16) of 
paper A] to the B&C solution for secondary extinc- 
tion with a Gaussian angular distribution. Equation 
(Bl l )  was used to calculate XRED depending on the 
free parameters ?, R and c. In order to eliminate the 
influence of possible differences in the efficiency of 
various least-squares minimization algorithms in all 
cases we also used a refinement based on the B&C 
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